Learn More

What is Data Science?

Data Science describes the processes, techniques, and tools used to extract deeper, non-obvious meaning from data of all kinds. Whether an organization is attempting to understand it's customers, operations, competition, or market, data science draws from best practices in computer science and statistics to find more meaning in the world.

While most organizations already make basic observations about their data by tracking sales, operations, productivity, and customer satisfaction; these organizations don't realize how much data science can improve decision making.

For example, several years ago we were asked to analyze a company attempting to address staffing problems. After gathering data, we were impressed with this organization's breadth of understanding of their sales cycle and staffing--the sales department knew exactly who their customers were, how frequently they purchased, and when they purchased.  It knew how many hours it paid employees and for which projects it paid them. After we applied data fusion and trend analysis techniques, this data produced even deeper insights such as identifying trigger events in the sales cycle that could be used to plan staffing and supply chain events. 

You can read many more examples of how data science produces deeper insights into data on our Case Studies page. 

What is Big Data?

Big data is code for difficult data. More precisely, it is any data set where traditional techniques (databases and software) are inadequate -- whether trying to to store, query, manipulate, analyze, or otherwise use the data. 

Because (by definition) Big Data is difficult, an industry is springing up, with various database, software products and analytical techniques to address the most common problems with traditional techniques. These are often described using the three (3) V's: Volume, Variety, and Velocity. Essentially, data sets that become too big, contain incongruous data types (such as video files, images, documents, and text and numerical values) and require real time storage (such as click behavior online or sensor outputs from satellites, cell phones, and vehicles). 

The Big Data industry as a whole, in an effort to solve the 3Vs is still evolving as to how it will provide additional, non-obvious meaning difficult data giving rise to Data Science and Big Data Analytics.